Leukocyte Reduction in Non-Targeted Populations

Robertson D. Davenport, MD
The University of Michigan

Background

- CMV transmission [1]
 - RCT: HPC transplant
 - CMV seronegative vs. bedside leukocyte reduced
 - Outcome measure: CMV infection in 100 days
 - Equivalent rate of CMV infection: 1.3% v 2.4%
 - Higher rate of CMV disease: 0% v. 2.4%

Background

- HLA alloimmunization [3]
 - RCT: AML
 - RDPC v. F-RDPC v. UVB-RDPC v. F-SDP
 - Outcome measure: alloimmunization, platelet refractoriness
 - LCT: 45% v. 18% v. 21% v. 17%
 - Refractory: 16% v. 7% v. 10% v. 8%
 - SDP no additional benefit

Background

- Febrile non-hemolytic transfusion reactions
 - Multiple observational studies
 - Prospective case controlled studies using various leukocyte reduction methods

"Targeted" Populations

- HPC transplantation
- Acute or chronic leukemia
- Lymphoma
- Solid organ transplantation
- Congenital immune deficiency
- Acquired cellular immune deficiency
- Intrauterine transfusion
- Chronic transfusion requirement

Objectives of This Review

- Review clinical studies published in the last 4 years of the impact of leukocyte reduction of cellular blood components
 - CMV transmission
 - Alloimmunization
 - Febrile transfusion reactions
 - Clinical outcomes

Data Sources

- Study types
 - Randomized clinical trials
 - Cohort "before and after" studies
 - Meta-analyses
- References at end of presentation

CMV Transmission

- Prospective cohort study: HPC transplant [2]
- CMV seronegative donor/recipient pairs
- Period 1: 5/94 11/96
 - RDPC + SDP: post-storage filtration
 - RBC: pre-storage filtration
- Period 2: 12/96 2/00
 - SDP: LR by centrifugation
- Outcome measures: CMV antigenemia by day 100

Blood Components

- LR failures
 - RBC: 0.2% (mean 6.0x10⁶)
 - RDPC: 0%
 - SDP: 0.4% (mean 15.1x10⁶)
- CMV+ donors
 - RBC: 1.2%
 - RDPC: 1.6%
 - SCP: 8.0%

Incidence of CMV Antigenemia

Blood Component Support

	CMV	No CMV
	n=24	n=783
Total units	55 ±8	36 ±2
Total CMV- units	47 ±7	34 ±2
Total CMV+ units	7 ±2	3 ± 0.3
CMV+ RBC	0.9 ± 0.6	0.1 ± 0.1
CMV+ RDPC	0.3 ± 0.2	0.3 ± 0.1
CMV+ SDP	6 ±2	2 ±0.2

Outcomes

- CMV antigenemia
 - 24/807 (3.0%) patients
 - 21 received preemptive gancicolver
- No CMV disease

Viral Activation in HIV

- Double blind RCT: HIV and CMV infection [15]
- Unmodified RBC v. LR-RBC
- Outcome measures: HIV RNA, CMV DNA, survival
- 531 patients received 3864 units
- No difference in baseline characteristics or transfusion treatment

Time to First Serious HIV-Related Complication or Death

Plasma HIV RNA Following Transfusion

CMV DNA Titer Following Transfusion

Alloimmunization

- Retrospective cohort study: acute leukemia and HPC transplant [14]
- Period 1: 1/94 11/97
 - <10% LR
- Period 2: 8/99 7/02
 - 100% LR
- Platelet transfusion threshold reduced 5/98
- Outcome measure: LCT antibody and platelet refractoriness

Platelet Transfusions

	Pre-ULR	Post-ULR
Transfusions/pt	28 ±31	17 ±20
Donor exposures/pt	107 ±119	61 ±69
HLA matched SDP	7%	3%
Pts. receiving HLA matched	16%	5%

Alloimmunization

	Pre-ULR	Post-ULR
Overall	19%	7%
Nulliparous/ nontransfused	25%	11%
Parous only	15%	10%
Transfused only	29%	2%

Platelet Refractoriness

	Pre-ULR	Post-ULR
Overall	40%	23%
Alloimmune	14%	4%
refractory		
Nulliparous/	8%	2%
nontransfused		
Parous only	11%	9%
Transfused only	20%	0%

Alloimmunization

- RCT: Cardiac surgery [11]
- Buffy-coat depleted RBCs v. Prestorage filtered RBCs v. Post-storage filtered RBCs
- Outcome measures: LCT antibodies at 3-10 weeks and 20-30 weeks

Patient Characteristics

	Control	Pre-LR	Post-LR
Prior transfusion or pregnancy	41.5%	36.8%	48.2%
RBCs transfused	4 (2;6)	4 (2;6)	4 (3;6)
Platelet transfusions	7.0%	6.4%	8.8%

LCT Antibody Responses

Pre	Post	Control	Pre-LR	Post-LR
-	-	66.2%	68.0%	71.5%
-	+	9.9%	11.3%	7.2%
+	++	6.2%	7.0%	7.2%
+	_	8.7%	8.5%	8.8%
+	+	6.7%	7.0%	8.8%

Febrile Transfusion Reactions

- 6 retrospective cohort studies, 1 RCT [4,5,6,7,8,9]
- FNHTR: Diagnosis of exclusion
- Data reported as reactions/total units transfused
- Confidence intervals calculated from published data

Febrile Transfusion Reaction Rates

Trap Study

- Analysis of transfusion reactions [23]
- Febrile and chill/rigor rxns extracted
- Control
 - -2.5% (1.8;3.2)
- Filtered RDPC
 - -1.6% (1.1;2.1)
- Rxns associated with >5x10⁶ WBC and storage > 2 days

Outcome Studies

- RCT: general hospital population [6]
- Patients with specific LR indications excluded
- Unmodified RBC and RDP v. Prestorage LR RBC and process LR SDP
- Outcome measures: in-hospital mortality, post-transfusion length of stay

Major Patient Characteristics

Control n=1425	LR n=1355
38.0%	39.5%
62.0%	60.5%
20.9%	20.4%
15.0%	15.8%
8.4%	7.2%
8.9%	7.0%
7.4%	8.0%
	38.0% 62.0% 20.9% 15.0% 8.4% 8.9%

Primary Outcomes

	Control	LR
Mortality	8.5%	9.0%
Length of Stay	6.4 (1.7,23.2)	6.3 (1.7,22.3)

Subgroup Analysis

	Mortality		Median LOS	
	Control	LR	Control	LR
Cardiac surgery	5.4%	6.9%	6.7	6.7
Colorectal surgery	7.3%	9.1%	9.7	9.8
Other surgery	7.7%	8.3%	7.0	7.1
Nonsurgical	10.9%	10.7%	5.2	4.7

Concerns Raised About This Study

- Age of RBC units
 - Control: 11.5 ± 7.6 days, LR: 18.3 ± 8.8 days
- Source of platelets
 - Control: pools of 6 RDPC, LR: process LR
 SDP
- Exclusion of patients with LR indications
- Protocol violations
 - Control: 9.3%, LR: 12.6%

Leukoreduction of RBC in Major Surgery

- RCT: aortic aneurysmectomy and gastrointestinal surgery [18]
- Buffy coat depleted RBCs v. filter LR RBCs
- Outcome measures:
 - Mortality, ICU stay
 - Multi-organ failure, infection, hospital LOS

Trial Profile

Intention-to-Treat Analysis

Intention-to-Treat Analysis

Subgroup Analysis

- 494 transfused subjects (47%)
- Mortality
 - Overall: OR 0.74 (0.44;1.24)
 - GI surgery: OR 0.53 (0.17;1.25)
- Multi-organ failure
 - Overall: OR 0.74 (0.49;1.16)
- LOS
 - Overall 4.5 days less (p=0.032)

Infection Rates in Cardiac Surgery

- RCT: CABG, AVR, MVR [10]
- Plasma-depleted RBCs v. Buffy coatdepleted RBCs v. Filtered LR RBCs
- Outcome measures
 - Hospital-acquired infection
 - Length of stay, fever

In-Hospital Infections

	Filtered	BCD	PR
All patients	11.3%	10.8%	17.7%
p=0.1			
Transfused patients	12.6%	11.0%	20.2%
p=0.02			

Postoperative Outcomes

	Filtered	BCD	PR
LOS	7 (3-42)	6 (3-27)	7 (3-55)
Patients with fever p=0.02	30.8%	32.4%	43.3%
Days of fever	95	120	136
Days at risk	1124	1170	1129

Leukocyte Reduction of RBC in Cardiac Surgery

- Double blind RCT: valve replacement
 ±CABG [17]
- Buffy coat-depleted RBCs v. Filtered LR RBCs
- Outcome measures:
 - 90-day mortality
 - In-hospital mortality, LOS, infections

Intention-to-Treat Analysis

	BCD	LR	Odds Ratio
90-day mortality	12.7%	8.4%	1.52 (0.84-2.73)
In-hospital mortality	10.1%	5.5%	1.99 (0.99-4.00)
Infection	31.6%	22.6%	1.64 (1.08-2.49)
MODS	20.7%	20.4%	10.7 (0.67-2.49)

Analysis of Transfused Patients

	OR	95% CI
90-day mortality	1.52	0.84 - 2.73
In-hospital mortality	1.99	0.99 - 4.00
>3 units	2.43	1.16 - 5.12
Infections	1.64	1.08 - 2.49

Leukoreduction of RBCs in Elective Aortic Surgery

- Retrospective cohort study: abdominal aortic surgery [13]
- Pre-ULR: 1/95-3/98 v. Post-ULR: 4/98-10/00
- Unmodified or buffy coat-depleted RBCs (192 pts) v. Filtered LR RBCs (195 pts)
- Outcome measures: 30-day mortality, infections

Differences in Study Groups

	Control	LR
Hypertension	50.5%	68.7%
Diuretics	12.5%	21.5%
CAD	30.7%	19.0%
Prior PTCA or CABG	15.6%	9.2%
Respiratory insufficiency	9.2%	4.2%

Major Outcomes

	Control	LR
	(95% CI)	(95% CI)
Death	8.9% (4.8%-12.9%)	5.6% (2.4%-8.9%)
Infections	31.3% (24.7%-37.8%)	26.7% (20.5%-32.9%)

ULR in Canada

- Retrospective cohort study: RBC transfusion for cardiac surgery, hip repair, surgical ICU admission, trauma [24]
- 1-year prior to ULR v. 1-year post
- Unmodified RBCs v. Filtered LR RBCs
- Outcome measures: In-hospital mortality, serious noscomial infections (pneumonia, bacteriemia, sepsis, wound infection)

Differences in Study Populations

	Pre-ULR	Post-URL	Difference (95% CI)
Severe lung disease	5.3%	4.2%	1.1% (0.41;1.79)
β-blockers	45.1%	49.0%	-3.89% (-5.50; -2.28)
Aspirin	45.2%	47.2%	-2.08% (-3.69;-1.47)
ACE inhibitors	30.7%	35.8%	-5.09% (-6.61;-3.57)
Transfusion rate	50.7%	48.8%	-1.95% (-2.80;-1.09)

Odds of Mortality or Infection

Medication Confounders

• The use of cardiac medications including aspirin, β-blockers, and angiotensin-converting enzyme inhibitors all resulted in the unadjusted OR for mortality shifting from a significant to a nonsignificant association.

Meta-analysis of RCTs

- RCTs comparing LR allogeneic to non-LR allogeneic RBC transfusions. [19]
- 10 surgical studies included
 - 3 cardiac, 4 colorectal, 1 GI, 2 mixed
 - Proportion not transfused 2% 73%
 - 1 study blinded physicians
 - 6 pre-storage, 4 post-storage, 2 bedside LR
- Intention-to-treat and subgroup analysis

Postoperative Infections

Mortality

Intention-to-Treat v. Subgroup Analysis

- Randomized population is analyzed in intentionto-treat
- Positive effects seen in intention-to-treat are robust
- Untransfused subjects dilute the power of a study
- Subgroups may not be representative of the randomized population
- Unblinded studies are particularly susceptible to bias in subgroups

Meta-analysis of RCTs

- RCTs comparing LR allogeneic and/or autologous RBC or WB to allogeneic RBC or WB transfusion
 [20]
- 12 studies included
 - 3 cardiac surgery, 4 colorectal surgery, 2 aortic surgery,
 1 mixed surgery, 1 burn trauma, 1 mixed hospital pts.
 - 4 autologous blood
- Intention-to-treat analysis only

Short-Term Mortality

Favors control

Colorectal CA

Colorectal CA

Colorectal CA

Cardiac

AAA

Burn surgery

Colorectal CA

Cardiac

General hospital

AAA

Mixed surgery

Cardiac

Cardiac Surgery

Favors control

Favors LR

Pre-Storage Leukocyte Reduction

Favors control

Favors LR

Meta-analysis of "Before and After" Studies

- Cohort studies reporting postoperative infection and/or mortality before and after implementation of ULR [16]
- 6 studies included
 - 2 cardiac surgery, 1 aortic surgery, 1
 orthopedic/cardiac surgery, 1 mixed surgical, 1
 neonatal

Unadjusted Postoperative Infection

Favors LR Favors control

Adjusted Postoperative Infection

Favors LR

Favors control

Unadjusted Mortality

Favors LR Favors control

Adjusted Mortality

Favors LR Favors control

Neonatal Transfusion

- Systematic review of clinical trials of LR in neonatal transfusion [25]
- 2 RCTs, 1 before and after study, 1 non-randomized controlled trial identified
- Outcome measures
 - CMV transmission 2 studies
 - HLA immunization 2 studies

Pooled Analysis

Conclusions

- CMV transmission by LR components is low.
- LR does not effect the course of HIV infection.
- HLA alloimmunization and platelet refractoriness are reduced by LR but the effect may not be apparent in single transfusion episodes or previously exposed individuals.

Conclusions

- LR reduces but does not eliminate febrile transfusion reactions. Interpretation of reports is difficult due to the subjective nature of the diagnosis.
- Short-term mortality in cardiac surgery appears to be modestly reduced by LR.

Conclusions

- LR appears not to have a significant effect on post-operative infections. Interpretation of studies is difficult because of varying definitions of infection.
- A beneficial effect of LR in general hospital populations has not been demonstrated.

References

- 1. Bowden. Blood 1995; 86:3598-603
- 2. Nichols. Blood 2003; 101:4195-200
- 3. TRAP trial. N Engl J Med 1997;337:1861-9
- 4. Uhlmann. Transfusion 2001;41:997-1000
- 5. Ibojie. Transfus Med 2002;12:181-5
- 6. Dzik. Transfusion 2002;42:1114-22
- 7. King. Transfusion 2004; 44:25-9
- 8. Yazer. Transfusion 2004;44:10-5

References

- 9. Paglino. Transfusion 2004;44:16-24
- 10. Wallis. Transfusion 2002;42:1127-34
- 11. Van de Watering. Transfusion 2003;43:765-71
- 13. Baron. Anesth Analg 2002;94:529-37
- 14. Seftel. Blood 2004;103:222-9
- 15. Collier. JAMA 2001;285:1592-1601
- 16. Vamvakas. Vox Sang 2004;86:111-9
- 17. Bilgin. Circulation 2004;109:2755-60

References

- 18. Van Hilten. BMJ 2004;348:1281-8
- 19. Ferguson. Can J Anaesth 2004;51:417-24
- 20. Vamvakas. Transfusion 2003;43:963-73
- 21. Fung Transfusion 2004;44:30-5
- 22. Llewelyn. Transfusion 2004;44:489-500
- 23. Enright. Transfusion 2003;43:1545
- 24. Hebert. JAMA 2003;289:1941-9
- 25. Fergusson. Transfusion 2002; 42:159-65